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Abstract
Multi-dimensional simple waves built on the basis of the Boillat condition are
employed for fully relativistic fluid and plasma flows. Three essential modes,
namely the vortex, the entropy and sound modes, are derived where each of
them is different from its non-relativistic analogue. The vortex and entropy
modes are formally solved in both the laboratory and wave frame (co-moving
with the wavefront) to yield a few classical solutions. It is shown that by making
a suitable transformation to the wave frame, it will be possible to exactly solve
the sound mode at ultra-relativistic temperatures. In addition, the surface which
is the boundary between the permitted and forbidden regions of the solutions
is introduced and determined. Finally, a symmetry analysis is performed for
the vortex mode equation up to both point and contact transformations. The
derived symmetry properties and their corresponding fundamental invariants
are shown to create a wide variety of classical solutions; some of them may
have physical interest.

PACS numbers: 47.10.A-, 47.75.+f

1. Introduction

Investigation of the nonlinear phenomena appearing in a very wide area of pure and applied
sciences has undergone extensive progress and development. These studies, which split
into numerical and analytical considerations, are essential and in most cases related to some
nonlinear differential equations. In spite of such a huge amount of improvements, almost all
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of these equations are still far from being well understood. Among those nonlinear systems,
a few interesting open problems concern the hydrodynamic type of equations governing the
fluid motion. In particular, the Euler and Navier–Stokes equations, which exhibit a mysterious
behaviour, are being intensively studied in two main considerations: the incompressible
motion mostly dealing with the vortex dynamics and the compressible flow concerning
the appearance of discontinuous shocks. Both of these problems are somehow related to
the debate on the regularity of solutions. In the former consideration the aim is to understand
the mechanism of occurrence of vortex singularities, while in the latter the shock convergence
is the most important question [1–3]. The core of these subjects is the following principal
open question: starting from an initially smooth flow, how can we predict the appearance of
any kind of discontinuity or singularity in later times?

The wide variety of applications to fluid motions makes it necessary to deal with all kinds
of differential equations, namely, elliptic, parabolic and hyperbolic equations. Elliptic and
parabolic equations have relatively better behaviour than hyperbolic ones and thus regularity
results of the former equations are stronger and more developed relative to the latter ones.
Indeed, there are many well-defined methods for hyperbolic conservation equations, for
example, well-posedness results in the form of formal mathematical proofs [4]. However,
the breakdown of solutions in hyperbolic systems is a very open and complex problem.
Only in some cases for dissipative hyperbolic systems do we know that there exist global
smooth solutions provided initial data are sufficiently small while the necessary condition
is still an open problem also in semi-linear cases (which may include hydrodynamic-type
equations). These equations posses some characteristic curves or surfaces which naturally
have the capability of forming discontinuities. This, of course, makes the nature of the classical
(i.e. continuously differentiable or C1) solution to be ‘local’, which means that the classical
solution may exist only in some part of the space and in some intervals of time. Generally,
there are many topological, geometrical and analytical unknown features determining the
validity of any solution which is very difficult to discover with the present human knowledge,
and thus new tools are needed.

In the present paper, a classical (C1) solution for relativistic flows is addressed. This type
of solution is not only interesting in itself, but it also seems that it may play an important role
in developing perhaps a new type of weak solutions. Indeed, although generally in proofs
of the existence and uniqueness of weak solutions we do not need any classical solution,
sometimes it is useful to build a 1D shock convergence proof based on a 1D Riemann
or simple wave (classical) solution [1]. Simple (Riemann) waves lie in the framework of
an excellent and rich set of classical solutions for compressible ideal flows governed by
hyperbolic equations. They have the capability of breakdown and discontinuity formation
[1, 2] and blow-up occurrence [5]. Simple waves are constructed on the basis of characteristics
which clearly are not global classical solutions. They were discovered first by Riemann in
the 1D form [6–12] and still appear as very common and useful analytical tools to achieve
shock waves [1, 2, 7, 9, 13, 14]. By imposing more restrictions and limitations on these
solutions it was possible to build multi-dimensional simple waves [15–20]. Even a more
generalized treatment yields double waves and multi-waves, which yield more advanced
classical solutions with more intensive blow-up [20–28]. It looks acceptable that one can
obtain a new type of shock convergence built on the basis of multidimensional simple waves
presented here.

Although boundary conditions are usually important for any system of differential
equations but since we consider here no boundary data for our problem, we have the benefit
of using symmetry analysis for the equations under study. Symmetry methods have been
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already employed for studying fluid equations mostly in non-relativistic fluids. Hence, it is
natural to ask about these methods in solving equations (6)–(9). However, this looks like a
very difficult task and an easier way is to investigate (restricted) simple wave modal equations
through symmetry analysis. This is done in the present study only for the vortex mode for
simplicity. Symmetry investigations reach a wide variety of information about equations
under consideration some of which may be physically of interest. For instance it is possible
to find the Lie point and contact groups of transformations which preserve the submanifold
of the classical solutions of the equation. This leads to obtain a new solution based on an
existing solution (see discussions related to equation (115) for details). Another advantage
of symmetry methods lies within finding invariants of group actions which finally tends to
extract further solutions (see section 5.2).

It is obvious that taking into account relativistic effects highly increases the coupling
and so the nonlinearity of the fluid and plasma motions. Relativistic flows have been known
for a long time [29–31], and especially they are important in astrophysical and cosmological
phenomena. In addition, under recent technical progresses in intense laser–plasma interactions,
in the plasma-based high-energy charged particle acceleration schemes and in fusion plasmas,
the access to relativistic effects in the laboratory is now very easy. Therefore, great attention
has been paid to analyse relativistic flows in plasmas. Again, the study of simple waves plays
a very fundamental role as almost the only available nonstationary exact solution with the
ability of discontinuity formation.

A very excellent and complete mathematical discussion on one-dimensional relativistic
MHD simple waves has been reviewed by Shikin [32]. Some solutions of these 1D simple
waves are found in many papers. Although a relativistic 2D double wave solution has been
given only for ultra-relativistic fluids [27], still we observe the missing of a multi-dimensional
simple wave for a fully relativistic flow. This task is the aim of the present paper in which the
approach of [19] is employed and generalized.

Physically, it is a valid question to ask why we should consider relativistic fluids while
usually at such high temperatures matter is found in the plasma form and so one has to take into
account electromagnetic fields leading to MHD equations. However, this is not always true
because sometimes we deal with neutral fluids like neutron stars. Moreover, in the absence of
any external magnetic field and when the typical length and time for the non-neutrality of the
plasma are sufficiently less than the length and time for macroscopic motions, the plasma can
be considered as a neutral fluid with a very high accuracy. Hence, it makes sense to consider
the ideal relativistic flow here.

In the next section, after a brief derivation of relativistic ideal fluid equations, a multi-
dimensional simple wave ansatz is substituted into these equations and various modes and
phase velocities relative to the laboratory (fixed) frame are found. In section 3, some solutions
for the vortex and entropy modes are given only in the laboratory frame. The presented
solutions are very general and formal, and a detailed solution is very difficult and needs to
determine the initial and boundary conditions precisely. Thus, our solutions are very general
including many arbitrary functions. In section 4, the equations are rewritten in the wave frame
and again some simple typical solutions are given for the all three modes, namely the vortex,
the entropy and sound modes. In particular, for the sound mode, since its equations are very
complicated in the laboratory frame, we will see in section 4 that these equations in the wave
frame at ultra-relativistic temperatures are simplified, and it will be possible to obtain formal
solutions for it. In section 5, we investigate symmetry properties and their related topics for
the vortex mode equation as a sample equation appearing in our problem. Finally, a summary
and concluding remarks are given in section 6.
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2. Multidimensional simple wave formulation

Relativistic effects in continuum matters occur in two aspects, namely large macroscopic
(fluid) velocities and relativistic temperatures at which the mean thermal energy of particles
are comparable with their rest energy. Both of these aspects are included in the energy–
momentum tensor

T k
i = wukui − Pδk

i (i, k = 0, 1, 2, 3), (1)

where uj = (γ, γ v/c) is the contra-variant 4-velocity and thus uj = (γ,−γ v/c) is the co-
variant 4-velocity and w = ε + P in which P is the fluid pressure and ε is the internal energy
(including the rest energy) per unit proper volume (unit volume in the inertial frame in which
the fluid is momentarily at rest). Therefore, w is the enthalpy per unit proper volume. Also, v
is the fluid velocity and γ = (1 − v2/c2)−1/2 where c is the speed of light in vacuum.

Our basic equations consist of the continuity equation

∂

∂xi
(nui) = 0, or

1

c

∂

∂t
(γ n) + ∇ · (nγ v) = 0, (2)

and the vanishing 4-divergence of the energy–momentum tensor

∂

∂xk
T k

i = 0 (i = 0, 1, 2, 3) (3)

where n is the number density of the fluid particles in the proper frame and (xi) is the 4-vector
of the spacetime coordinates in which x0 = c t (c is the speed of light) and (x1, x2, x3) = r.
By virtue of the thermodynamic identity, T dS = d(w/n) − dP/n (T is the fluid temperature
and S is the entropy per unit particle), one can combine equations (2) and (3) to obtain [32]

dS

dt
= ∂S

∂t
+ v · ∇S = 0. (4)

Equation (4) can be alternatively considered in place of the zeroth component (i = 0) of
equation (3). Thus, our set of equations consists of five equations (2), (4) and the spatial
components of (3). This system, of course, needs a thermodynamical equation of state
P = P(S,w). However, it was found that this system of equations takes a more appropriate
form by the use of the following useful transformation [32]:

κi = w

mnc
ui, ρ̃ = (mnc)2

w
, (5)

where m is the ‘mean’ rest mass of all particles in the fluid. This transformation makes our
final system of equations to

1

c

∂

∂t
(ρ̃κ0) + ∇ · (ρ̃κ) = 0, (6)

κ0

c

∂κ

∂t
+ (κ · ∇)κ = − 1

ρ̃
∇P, (7)

κ0

c

∂S

∂t
+ κ · ∇S = 0, (8)

P = P(S, ρ̃). (9)

Here κi = (κ0,κ), and thus κi = (κ0,−κ) and

κ0 = κ0 =
√

κ2 + w/ρ̃ (κ = |κ|), (10)

which follows from the identity uiui = 1.
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The special feature of a simple wave in any quasilinear hyperbolic system of equations
is that all quantities are considered as functions of only one variable which we call the phase
and denote by ϕ = ϕ(r, t). In our problem, we write

U = U(ϕ), (11)

where

U = (ρ̃, κ1, κ2, κ3, S) (12)

is the state vector of the system. Boillat [17, 19] showed that for a simple wave it is necessary
to have

∇ϕ

|∇ϕ| := n = n(ϕ), −∂ϕ/∂t

|∇ϕ| := λ = λ(ϕ). (13)

In other words, the unit vector n normal to the wavefront must be only a function of ϕ and
the same is true for the phase velocity λ. Finally, condition (13) implies that ϕ must satisfy
[17, 19]

G(ϕ, r, t) := f (ϕ) + λ(ϕ)t − r · n(ϕ) = 0, (14)

where f is an arbitrary differentiable function to be fixed under initial conditions.
Equation (14) clearly means that level surfaces of ϕ are flat planes. The functional form
of n(ϕ) cannot be determined from any equation and so it remains arbitrary to be flexible to
fit under a given condition.

There are two noticeable points about our multi-dimensional simple waves. The first is
the wave breaking at which the time and spatial derivatives of ϕ and all variables diverge when
F −→ 0 provided that

∂ϕ

∂t
= −λ(ϕ)

F
, ∇ϕ = n(ϕ)

F
, (15)

F := ∂G

∂ϕ
= df (ϕ)

dϕ
+

dλ(ϕ)

dϕ
t − r · dn(ϕ)

dϕ
= 1

|∇ϕ| . (16)

Equations (15) are easily derived by implicit time and space differentiations of (14). Thus,
our simple wave solution is valid only when F > 0 and at any time and point where F = 0
solution is not correct. The second point arises from the dependence of n on ϕ which implies
that for two different values ϕ1 and ϕ2 of ϕ generally n(ϕ1) and n(ϕ2) are not parallel and thus
they have an intersection on a line at which the solution is multi-valued which is not accepted.
Hence, the domain of the valid solution must not contain such intersections. Both of these
points demonstrate the ‘local’ character of simple waves.

For a unidirectional 1D simple wave where n is a constant vector it is possible for each
value of ϕ to calculate the time of wave breaking (F = 0) as tc(ϕ) = −(df/dϕ)/dλ/dϕ

and the earliest time of the wave breaking is obtained by solving the equation (dtc/dϕ) = 0
[9]. Unfortunately, such a good situation does not hold in the multidimensional case when
n = n(ϕ). Let us see this in a quantitative way. Singular points (wave breaking) must not
only satisfy the simple wave condition (14), but also they should fulfil

F = 0. (17)

Thus, the wave breaking occurs on the line of intersection of the two perpendicular planes
G = 0 and F = 0. This line is exactly the rotation axis of the wavefront at ϕ when ϕ has an
infinitesimal growth to ϕ + δϕ. This will be easily seen if we observe that the wavefront at
ϕ + δϕ must satisfy

G(ϕ + δϕ, r, t) = 0, or G(ϕ, r, t) + Fδϕ = 0.
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Since the above equation holds for any value of δϕ, equations (14) and (17) appear again. We
may, therefore, conclude (without a rigorous proof) that if the wave breaking (singularity) line
lies out of the region of the solution, the line of multi-valuedness will also lie in that region.
Besides, since a line of singularity for each value of ϕ exists at each instant of time, it is
infeasible to speak about tc(ϕ). However, if the fluid fills the whole space R

3 we can obtain
a moving surface constructed at any time exactly from all of these singular lines at that time.
This surface is in fact the boundary between the forbidden and permitted regions relative to a
simple wave solution.

Now, we substitute the simple wave ansatz (11) into equations (6)–(8) supplemented by
equation (9) and then divide each equation by |∇ϕ| and use (13) to obtain the system of five
quasilinear coupled equations

A
dU
dϕ

= 0, (18)

where A is the 5 × 5 matrix with the following elements:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κn − λ
c

(
ρ̃ ∂κ0

∂ρ̃
+ κ0

)
ρ̃
(
n1 − λ

c
κ1
κ0

)
ρ̃
(
n2 − λ

c
κ2
κ0

)
ρ̃
(
n3 − λ

c

κ3
κ0

) − λ
c
ρ̃ ∂κ0

∂S

a2n1
ρ̃

κn − λ
c
κ0 0 0 PSn1

ρ̃

a2n2
ρ̃

0 κn − λ
c
κ0 0 PSn2

ρ̃

a2n3
ρ̃

0 0 κn − λ
c
κ0

PSn2
ρ̃

0 0 0 0 κn − λ
c
κ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

In the above matrix, we have used the following notations:

κn := κ · n =
3∑

i=1

κini, a2 :=
(

∂P

∂ρ̃

)
S

, PS :=
(

∂P

∂S

)
ρ̃

. (20)

Moreover, in the calculation of ∂κ0
∂ρ̃

and ∂κ0
∂S

we must assume w = w(ρ̃, S) and use equation (10)
to express κ0 explicitly as a function of all five variables U = (ρ̃,κ, S).

Equation (18) has a nontrivial solution only when

det(A) = 0, (21)

which constructs a fifth-order equation for λ with a triple root

λ1 = λ2 = λ3 = c
κn

κ0
= vn, (22)

while the fourth and fifth roots λ4 and λ5 are the larger and smaller roots of the following
quadratic equation, respectively:[

κn − λ

c

(
ρ̃

∂κ0

∂ρ̃
+ κ0

)](
κn − λ

c
κ0

)
= a2

(
1 − λ

c

κn

κ0

)
. (23)

The triplet root is the phase velocity for the two vortex modes and one entropy, to be discussed
in the next section. The roots λ4 and λ5 are the phase velocities for the forward and backward
sound modes, respectively. Although these modes have non-relativistic analogues, they differ
significantly from those calculated in the relativistic case.

Substitution of each value of the phase velocity into (18) yields some ordinary differential
equations for U(ϕ) to be solved. For the entropy and vortex modes, these equations are not
difficult and some formal solutions both in the laboratory and wave frames will be presented in
sections 3 and 4, respectively. Since the equations for the sound waves are complicated in the
laboratory frame, we transform to the wave frame and for a slight simplification we consider
the physically common case of ultra-relativistic temperatures and present some solutions in
section 4.
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3. Vortex and entropy modes

If we substitute the triplet root λ = c κn

κ0
into (18), we obtain

− κn

κ0

∂κ0

∂ρ̃

dρ̃

dϕ
+

(
n − κn

κ2
0

κ

)
· dκ

dϕ
− κn

κ0

∂κ0

∂S

dS

dϕ
= 0, (24)

a2 dρ̃

dϕ
+ PS

dS

dϕ
= dP

dϕ
= 0 �⇒ P(ϕ) = const, (25)

0 · dS

dϕ
= 0. (26)

In equation (25) we have used the second and third equations of (20) together with (9).
Equation (26) admits the two cases of constant entropy (the vortex mode) and variable entropy
(the entropy mode).

3.1. Vortex modes

We have dS = 0 or

S(ϕ) = const, (27)

which, together with (25) and (9), yields the constancy of ρ̃, and so all thermodynamical
variables. Thus, only the fluid velocity considered in κ and n change with ϕ where n(ϕ) is
an arbitrary suitable function. Regarding the above results in equations (24) and (10), one can
obtain the equation for κ(ϕ):(

n − κn

κ2
0

κ

)
· dκ

dϕ
= 0, (28)

which must be supplemented by

κ0 =
√

κ2 + w0/ρ̃0, (29)

where w0 and ρ̃0 are constant throughout the wave. The factor
(
n − κn

κ2
0
κ
)

in (28) cannot be

zero because if it is zero we can take its inner product with n and obtain κ2
n = κ2 = κ2

0 which
is impossible by (29). Therefore, equation (28) is equivalent to

dκ

dϕ
= X(ϕ) ×

(
n − κn

κ2
0

κ

)
, (30)

where X(ϕ) is an arbitrary continuous function. It is possible to choose two functions X1(ϕ)

and X2(ϕ), where X1(ϕ) · X2(ϕ) = 0, which give two perpendicular and independent vortex
modes similar to the non-relativistic case [19].

It is also worth noting that we can define a generalized vortex

Ω := ∇ × κ = ∇ϕ × dκ

dϕ
= |∇ϕ|n × dκ

dϕ
, (31)

which is constant not only on the wavefront but also in advection with the fluid velocity

∂Ω
∂t

+ (v · ∇)Ω = |∇ϕ|
(

cκn

κ0
− λ

)
dΩ
dϕ

= 0, (32)

This fact is consistent with the ‘frozen in’ condition of field lines of Ω [33]:

∂

∂t

(
Ω
γ n

)
+ (v · ∇)

(
Ω
γ n

)
=
(

Ω
γ n

· ∇
)

v, (33)

7
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where the number density in the laboratory frame γ n is constant because

∇ · v = c∇ ·
(

κ

κ0

)
= c

|∇ϕ|
κ0

(
n − κn

κ2
0

κ

)
· dκ

dϕ
= 0, (34)

according to equation (28). Finally by (31) we find that

Ω · ∇ = |∇ϕ|Ω · n
d

dϕ
= 0,

by which equation (33) reduces to (32).
Equation (30) has many solutions since X(ϕ) is an arbitrary continuous function. It is,

therefore, easy to choose some suitable simple forms for X such that equation (30) can be
easily solved. As an example, consider two different forms

X = ακ, or X = α
κ2

0

κn

n, (35)

where α is a dimensionless constant. Selecting each form for X from (35) causes equation (30)
to reduce to

dκ

dϕ
= ακ × n(ϕ). (36)

Regardless of the functional form of n(ϕ), it is obvious from (36) that |κ(ϕ)| is constant
and from (29) κ0 is also constant and only the direction of κ(ϕ) changes by ϕ. To obtain a
more special solution, let us consider a 2D simple wave with [19]

n(ϕ) = (−sin ϕ, cos ϕ, 0), (37)

in a Cartesian coordinate system. In this case, we have

κ = κnn + κt t + κ3z, (38)

where

κn = κ · n = −κ1 sin ϕ + κ2 cos ϕ, κt = κ · t = −(κ1 cos ϕ + κ2 sin ϕ), (39)

where t = (−cos ϕ,−sin ϕ, 0) is normal to n. Substitution of (38) into (36) and using the
relations

dn
dϕ

= t,
dt
dϕ

= −n, n × t = z, (40)

one finds
dκn

dϕ
= κt , (41)

dκt

dϕ
+ κn − ακ3 = 0, (42)

dκ3

dϕ
= −ακt . (43)

Equations (41) and (43) yield

κ3 = −ακn + κ̄, (44)

where κ̄ is a constant with the dimension of κ (velocity). Then, we substitute κt from (41) and
κ3 from (44) into (42) to obtain

d2κn

dϕ2
+ (1 + α2)κn − ακ̄ = 0, (45)

8
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with a general solution

κn = κ̄n cos[
√

1 + α2(ϕ + β)] +
α

1 + α2
κ̄, (46)

where κ̄n is a constant with the dimension of κ (velocity), while β is a dimensionless constant.
Then, from (41) we have

κt = −
√

1 + α2κ̄n sin[
√

1 + α2(ϕ + β)], (47)

and from (44) we find

κ3 = −ακ̄n cos[
√

1 + α2(ϕ + β)] +
1

1 + α2
κ̄ . (48)

It is then straightforward to find κ1 and κ2 by the use of

κ1 = −(κn sin ϕ + κt cos ϕ), κ2 = κn cos ϕ − κt sin ϕ. (49)

It is also possible to obtain further solutions using symmetry analysis. These solutions
are listed through cases I–V in section 5.2 accompanied by brief physical explanations.
Another interesting fact deduced from the symmetry discussion is that if κ(ϕ) is a solution
corresponding to a suitable form of n(ϕ), then one can introduce a new form for n, say ñ,
corresponding to a new solution, say κ̃ (see section 5.1).

As mentioned before, a complete solution needs more detailed information about initial
and boundary conditions which are not of interest here.

3.2. Entropy modes

Here we have dS �= 0 in (26) and thus ρ̃ is not constant although by (25) P is still
constant. According to equation (10) κ0 is an explicit function of κ and w/ρ̃ where by
the thermodynamical state equation w is a function of ρ̃ and S. Thus, the first and third terms
on the left-hand side of equation (24) provide the derivative of κ0 arising from the term w/ρ̃

and the second term in the middle bracket in equation (24) makes the derivative with respect
to κ. Therefore, equation (24) reduces to

n ·
(

dκ

dϕ
− d(ln κ0)

dϕ
κ

)
= 0, (50)

which gives

dκ

dϕ
= Y(ϕ) × n +

d(ln κ0)

dϕ
κ, (51)

where Y(ϕ) is again an arbitrary continuous function. Let us again choose a suitable form for
Y(ϕ) to simplify the solution. For example, if Y is parallel to n we see from (51) that

κ = κ0C, (52)

where C = (c1, c2, c3) is a dimensionless constant vector. Since P is constant, the enthalpy w

becomes only a function of ρ̃ and thus equations (52) and (10) yield

κ = C√
1 − |C|2

√
w(ρ̃)

ρ̃
, (53)

which is valid if |C| < 1. It remains to specify the dependence of ρ̃ on ϕ. This dependence
is arbitrary because the fixing of ϕ is under our control and we can assume it as an arbitrary
function of one or more physical variables [19].

9



J. Phys. A: Math. Theor. 43 (2010) 165501 T Sahihi et al

4. Simple waves presented in the wave frame

Sometimes the forms taken by the equations concerning simple wave solutions are quite
complicated, which is to say not easily solvable. A mathematical trick here is to rewrite all
equations in terms of physical variables as measured in the wave frame. The wave frame
depends on a special value of the phase ϕ. That is, for any values of ϕ there is a plane
wavefront defined by equation (14) moving with the phase velocity Vph = λ(ϕ)n(ϕ) and we
consider a Lorentz transformation from the laboratory frame to the frame co-moving with this
wavefront. It is thus clear that to each value of ϕ corresponds a unique wave frame.

We denote all quantities in the wave frame by a prime, except scalar quantities such as
ρ̃, w, n, etc which are either Lorentz invariant or defined in the proper frame co-moving with
the fluid. Therefore, for the 4-vector κi we have

κ0 = cosh ξκ ′
0 + sinh ξκ ′

n, κn = cosh ξκ ′
n + sinh ξκ ′

0, κ⊥ = κ′
⊥, (54)

where κ ′
n = κ′ · n , κ′

⊥ = κ′ − κ ′
nn and ξ depends on ϕ thorough

tanh ξ = λ(ϕ)

c
. (55)

In the following subsections, we apply this method for the vortex, the entropy and sound
modes and give simple formal solutions for each one.

4.1. Vortex modes in the wave frame

For this mode, we already have λ
c

= κn

κ0
which by the substitution from (54) and (55) gives

κ ′
n = 0. (56)

It is, therefore, seen that in the wave frame the phase velocity takes the simple form through
the above equation. Then, we substitute (54) and (55) into (28) and use (56) and the identity
κ′

⊥ · n = 0 to obtain

cosh2 ξn · dκ′
⊥

dϕ
− sinh ξ

κ ′
0

κ′
⊥ · dκ′

⊥
dϕ

+ sinh ξ
dκ ′

0

dϕ
+ κ ′

0 cosh ξ
dξ

dϕ
= 0. (57)

Since (κ0,κ) is a 4-vector, equation (29) is invariant and due to (56) we have

κ ′
0 =

√
κ ′2

⊥ + w0/ρ̃0, (58)

by which equation (57) reduces to

κ′
⊥ · dn

dϕ
= −n · dκ′

⊥
dϕ

= κ ′
0

cosh ξ

dξ

dϕ
. (59)

Assuming that n(ϕ) is a known function, κ′
⊥ and ξ should satisfy equation (59), which

obviously admits a large amount of freedom. As a very simple solution, let us assume the
restriction

dκ′
⊥

dϕ
= −κ ′

⊥n, (60)

which dictates that κ ′
⊥ and κ ′

0 are both constant, and thus equation (59) can be easily solved to
give ∫ ξ

ξ0

dξ ′

cosh ξ ′ = arctan(sinh ξ) − arctan(sinh ξ0) = κ ′
⊥

κ ′
0

(ϕ − ϕ0). (61)

10
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From the above solution one can find ξ in terms of ϕ by which through equation (55) we have
λ(ϕ). For κ′

⊥ we formally solve equation (60) obtaining

κ′
⊥ = −κ ′

⊥

∫ ϕ

ϕ0

n(ϕ′)dϕ′ + κ′
⊥(ϕ0). (62)

Here we gave a very restricted solution just as an example to show the procedure of the
solution. Depending on the initial and boundary conditions, it is in principle possible to find
more realistic solutions although it seems to be very difficult.

4.2. Entropy mode in the wave frame

Since the phase velocity λ
c

= κn

κ0
is the same as for the vortex mode, equation (56) is again

valid here and transforming equation (50) in a manner similar to that performed for the vortex
mode we again obtain equation (59) for the entropy wave too but here since P is constant, w

is only a function of ρ̃ and thus

κ ′
0 =

√
κ ′2

⊥ + w(ρ̃)/ρ̃. (63)

Hence, the meaning of (59) for the entropy mode is different from this equation for the vortex
mode. Again, as a very restricted simple solution, we suggest equations (60) and (62) for
κ′

⊥(ϕ) resulting in the constancy of κ ′
⊥ and assume a given form for ρ̃(ϕ) by which from (63)

we have κ ′
0(ϕ) as a known function of ϕ and thus equation (59) has the formal solution

arctan(sinh ξ) − arctan(sinh ξ0) = κ ′
⊥

∫ ϕ

ϕ0

dϕ′

κ ′
0(ϕ

′)
. (64)

4.3. Sound mode in the wave frame

At first we see that in the laboratory reference frame there are five equations included in (18)
but due to equation (21) we have only four independent equations. The last (fifth) equation of
(18) by the use of (19) implies that equation (27) is also valid for the sound mode which by its
substitution into the first four equations of (18) yields(

κn − λ

c
κ0

)
dρ̃

dϕ
− λ

c
ρ̃

dκ0

dϕ
+ ρ̃n · dκ

dϕ
= 0, (65)

as the continuity equation, and(
κn − λ

c
κ0

)
dκ

dϕ
+

a2

ρ̃

dρ̃

dϕ
n = 0, (66)

as the momentum equation in which a2 is defined from (20). Equations (65) and (66) are four
equations but only three of them are independent, while the phase velocity is λ = λ4 or λ = λ5

which are the roots of the quadratic equation (23).
Let us rewrite equations (65) and (66) in terms of the wave frame quantities through

equations (54) to find

κ ′
n

dρ̃

dϕ
+ ρ̃κ ′

0
dξ

dϕ
+ ρ̃

dκ ′
n

dϕ
+ cosh ξ ρ̃n · dκ′⊥

dϕ
= 0, (67)

and

cosh ξ
a2

ρ̃κ ′
n

dρ̃

dϕ
n +

dκ′⊥
dϕ

+ n
d

dϕ
(κ ′

n cosh ξ + κ ′
0 sinh ξ) + (κ ′

n cosh ξ + κ ′
0 sinh ξ)

dn
dϕ

= 0, (68)

with only three independent equations.

11
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It is also necessary to rewrite the quadratic equation (23) (whose roots are the sound waves
λ4 and λ5) in terms of the wave frame quantities. Substitution of (54) and (55) into (23) yields(

κ ′
n − ρ̃

∂κ0

∂ρ̃
sinh ξ

)
κ ′

n = a2 κ ′
0

κ ′
0 + κ ′

n tanh ξ
. (69)

Now, we note that according to equation (10) we have

∂κ0

∂ρ̃
= 1

2κ0

∂

∂ρ̃

(
w

ρ̃

)
S

= 1

2

1

κ ′
0 cosh ξ + κ ′

n sinh ξ

d

dρ̃

(
w

ρ̃

)
, (70)

where we have used equation (27) by which the entropy is constant and thus w is only a
function of ρ̃. We then substitute equation (70) into (69) to obtain(

κ
′2
n − a2)κ ′

0 +

[
κ

′2
n − ρ̃

2

∂

∂ρ̃

(
w

ρ̃

)
S

]
κ ′

n tanh ξ = 0, (71)

where

κ ′
0 =

√
κ ′2 + w/ρ̃. (72)

Equation (71) determines the phase velocity tanh ξ in terms of the physical variables
measured in the wave frame but since it is generally complicated depending on the explicit
form of w(ρ̃), we cannot go further. However, it is possible to continue for the ultra-relativistic
case when KBT 	 mc2 which implies that [34]

w

w◦
=
(

T

T◦

)4

,
n

n◦
=
(

T

T◦

)3

, P = 1

4
w,

by which it is easy to see

w

ρ̃
= w◦

ρ̃2◦
ρ̃, a2 = dP

dρ̃
= 1

2

w◦
ρ̃2◦

ρ̃, (73)

where the subscript ‘◦’ denotes the equilibrium point of the fluid at which it is at rest. By the
above simplifications equation (71) reduces to(

κ
′2
n − w◦

2ρ̃2◦
ρ̃

)
(κ ′

0 + κ ′
n tanh ξ) = 0.

Since |κ ′
0/κ

′
n| > 1 while |tanh ξ | < 1, the second factor in the above equation cannot be zero

and thus for the sound mode in the ultra-relativistic case we obtain

κ ′
n = ∓a = ∓

√
w◦
2ρ̃2◦

ρ̃, κ ′
0 =

√
κ

′2
⊥ +

3

2

w◦
ρ̃2◦

ρ̃. (74)

Here the upper (minus) sign indicates the case where the fluid velocity is negative with respect
to the wavefront which means that the wave runs faster than the fluid and thus it refers to the
forward sound wave. Similarly, the lower (plus) sign refers to the backward sound wave.

As mentioned before, there are only three independent equations, namely equation (68)
when equation (74) is substituted into it. It is more convenient to write equation (68) in the
three orthogonal directions n, κ′⊥ and dn/dϕ. Thus, making the scalar product of (68) (after
the substitution of (74) into it) by n yields(

sinh ξ

√
w◦
2ρ̃2◦

ρ̃ ∓ cosh ξ

√
κ

′2
⊥ +

3

2

w◦
ρ̃2◦

ρ̃

)⎛⎝3

2

√
w◦
2ρ̃2◦

1√
ρ̃
(
κ

′2
⊥ + 3

2
w◦
ρ̃2◦

ρ̃
) dρ̃

dϕ
∓ dξ

dϕ

⎞⎠
= − sinh ξ√

κ
′2
⊥ + 3

2
w◦
ρ̃2◦

ρ̃
κ′⊥ · dκ′⊥

dϕ
+ κ′⊥ · dn

dϕ
, (75)

12
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where we have used the identity κ′⊥ · n = 0, which gives

dκ′⊥
dϕ

· n + κ′⊥ · dn
dϕ

= 0. (76)

Next, let us make the scalar product of (68) by κ′⊥:

κ′⊥ · dκ′⊥
dϕ

= −
(

sinh ξ

√
κ

′2
⊥ +

3

2

w◦
ρ̃2◦

ρ̃ ∓ cosh ξ

√
w◦
2ρ̃2◦

ρ̃

)
κ′⊥ · dn

dϕ
. (77)

Finally, the scalar product of (68) by dn/dϕ is

dκ′⊥
dϕ

· dn
dϕ

= −
(

sinh ξ

√
κ

′2
⊥ +

3

2

w◦
ρ̃2◦

ρ̃ ∓ cosh ξ

√
w◦
2ρ̃2◦

ρ̃

)
|dn/dϕ|2. (78)

Thus, we should solve the system of equations (75), (77) and (78) provided that n(ϕ) is a
known function.

Equations (77) and (78) have a common bracket on their right-hand sides which can be
eliminated among these two equations. Then by using the well-known ‘BAC-CAB rule’ in
vector triple products, one can obtain

dκ′⊥
dϕ

·
[

dn
dϕ

×
(

dn
dϕ

× κ′⊥
)]

= 0, (79)

which gives

dκ′⊥
dϕ

= Z(ϕ) ×
[

dn
dϕ

×
(

dn
dϕ

× κ′⊥
)]

, (80)

where Z(ϕ) is an arbitrary continuous function. We will not proceed further in this way but
alternatively seek more simple solutions. If we assume dκ′⊥

dϕ
= 0, then it is possible to show

after some calculations that this is not a consistent solution for the system of equations (75),
(77) and (78). However, a consistent simple solution is found under the assumption

dκ′⊥
dϕ

· n = −κ′⊥ · dn
dϕ

= 0. (81)

This condition with the help of (77) gives

κ ′
⊥ = const ≡ κ̄ ′

⊥. (82)

By the use of (81) and (82), since |tanh ξ | < 1, we find a differential equation relating ρ̃ to ξ

whose solution is

ρ̃ = κ̄
′2
⊥ ρ̃2

◦
3w◦

{
cosh

[
± 2√

3
(ξ − ξ◦) + cosh−1

(
1 +

3w◦
κ̄

′2
⊥ ρ̃◦

)]
− 1

}
, (83)

where the upper (positive) sign refers to the forward and the lower (negative) sign denotes
the backward sound wave. Now, we should find κ′⊥. It is clear from (81) and (82) that dκ′⊥

dϕ

is perpendicular to both κ′⊥ and n; thus dκ′⊥
dϕ

is parallel to n × κ′⊥. On the other hand, the

identity n · dn
dϕ

= 0 and equation (81) imply that dn
dϕ

is also parallel to n × κ′⊥. Therefore, we
conclude that

dκ′⊥
dϕ

= π(ϕ)
dn
dϕ

,

or equivalently

κ′⊥(ϕ) =
∫ ϕ

ϕ◦
π(ϕ′)

dn(ϕ′)
dϕ′ dϕ′ + κ′⊥(ϕ◦), (84)

13
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where π(ϕ′) is an arbitrary nonzero continuous scalar function (we remember that dκ′⊥
dϕ

cannot
vanish). Finally, we substitute (84) and (82) into (78) to obtain(

sinh ξ

√
κ

′2
⊥ +

3

2

w◦
ρ̃2◦

ρ̃ ∓ cosh ξ

√
w◦
2ρ̃2◦

ρ̃

)
= −π(ϕ). (85)

Equations (83) and (85) are used to express both ρ̃ and ξ as functions of ϕ and this means that
the problem is formally solved. Substitution of all the physical quantities obtained above into
the Lorentz transformation (54) will provide all the quantities in the laboratory frame.

5. Symmetry analysis for the vortex mode equation

Symmetry investigations of physical equations usually provide useful tools to better
understanding the behaviour of solutions and thus it is worth to apply this to our modal
equations obtained in the previous sections. The sound mode appears to be very complicated
and difficult to analyse and the entropy mode is relatively similar to the vortex mode. Therefore
the only suitable typical equation for a detailed analysis is the vortex mode equation. The
method presented in this section is based on Lie’s method of infinitesimals that is a special
case of the general method known as Cartan’s equivalence problem. The equivalence problem
even for the vortex mode equation (which is relatively a simple equation) appears to be very
complex with too many variables and a wide variety of possible cases. So let us restrict our
investigations to Lie symmetry analysis for the vortex mode equation.

Before starting this section, let us mention that from here on we change all the previous
notations to quite new applications. So, we forget the meaning of all letters or symbols used
in all the preceding sections and introduce new applications of them.

We consider equation (28) as a first-order ODE and rewrite it in the following form:

dk
dt

·
(

n − k · n
k2 + w

k
)

= 0, (86)

where w is a constant, t is treated as the wave phase, and k = (k1, k2, k3) and n = (n1, n2, n3)

are some vectors in R
3 having the physical meaning of κ and unit normal vector to the

wavefront, respectively. We deal with the latter equation to find its point and contact symmetry
properties and also give its fundamental invariants and a form of general solutions.

It is notable here that in the mathematical structure of the simple wave solution, the
functional form of the unit normal vector n (see equation (13)) cannot be determined from the
obtained equations. Thus, n must be arbitrarily fixed with the only restriction that its length be
unit. This arbitrariness of n provides a wide freedom for us to choose this vector. Therefore,
there appears two ‘viewpoints’ for the symmetry analysis of equation (86). The first is that
we fix the form of n in equation (86) from the beginning and consider k as the only dependent
variables. This type of analysis obviously depends on the special selected form of n and is not
of our interest here (in section 3.1 a typical solution was given by this approach).

The ‘second viewpoint’ is to consider both k and n as dependent variables in equation (86)
and find special symmetries consistent with this viewpoint. In other words, we may use the
arbitrariness of n and impose some restriction on it to become consistent with the second
viewpoint through which n will have some relation with k. This of course is not important
since there is no preassumption about n here.

Equation (86) is homogeneous and linear with respect to n, so this condition is not essential
in obtaining any solution. This condition appears important only for the compatibility of the
simple wave structure. Regarding this fact, we make our symmetry analysis in both cases of
arbitrary length and unit length for n and compare the results with each other.

14
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Throughout this section we assume that indices i, j vary between 1 and 3. Also each
index of a function implies the derivation of the function with respect to it, unless specifically
stated otherwise.

5.1. The point symmetry of the equation

To find symmetry group of equation (86) by the Lie infinitesimal method, we follow the
method presented in [35]. Roughly speaking, we find infinitesimal generators as well as the
Lie algebra structure of the symmetry group of that equation. In this subsection, we are
concerned with the action of the point transformation group.

In fact, equation (86) is an algebraic relation among the variables of the 1-jet space,
J 1(R, R

6), with (local) coordinates (t, k, n, q, p) where q = dk
dt

and p = dn
dt

. The coordinates
involve an independent variable t and six dependent variables ki, nj and their first derivatives
qi, pj with respect to t, respectively (1 � i, j � 3).

Let M be the total space of independent and dependent variables. The solution space of
equation (86), (if it exists) is a sub-variety S� ⊂ J 1(R, R

6) of the first-order jet bundle of one-
dimensional sub-manifolds ofM, that is, graph of functions ki, nj , of elements (t, ki(t), nj (t)),
satisfying equation (86) and the relations qi = ∂ki

∂t
and pj = ∂nj

∂t
are all fulfilled.

We define a point transformation on M with relations

t̃ = φ(t, k, n), k̃r = χr(t, k, n), ñs = ψs(t, k, n),

where φ, χr and ψs are arbitrary smooth functions and 1 � r, s � 3.

Theorem 1. The set of all point infinitesimal generators in the form

vT := T
∂

∂t
+

3∑
i=1

{(
k2 + w − k2

i

)−1
(

ni − k · n
k2 + w

ki

)
Tt

}
∂

∂ni

, (87)

is an infinite-dimensional Lie algebra of equation (86) for arbitrary n (not necessarily unit).

Proof. Let

v := T
∂

∂t
+

3∑
i=1

(
Ki

∂

∂ki

+ Ni

∂

∂ni

)
(88)

be the general form of infinitesimal generators that signify the Lie algebra g of the symmetry
group G of equation (86). In this relation, T ,Ki and Nj are smooth functions of variables t, ki

and nj. The first-order prolongation [35] of v is as follows:

v(1) := v +
∑

i

Kt
i

∂

∂qi

+
∑

j

Nt
j

∂

∂pj

,

where Kt
i = Dt Q

i
1 + T qi,t and Nt

j = Dt Q
j

2 + T pj,t , in which Dt is the total derivative and

Qi
1 = Ki − T qi and Q

j

2 = Nj − T pj are characteristics of the vector field v [35]. By
applying v(1) on (86), we obtain the following relation:∑

i

⎧⎨⎩[Ki((k2 + w)(k · n + ni) − 2 ki) + Ni(k2 + w)
(
k2 + w − k2

i

)]
qi + (ni(k2 + w)

−ki(k · n))

⎡⎣Ki t −
∑

j

(
qj Ki kj

+ pj Ki nj

)− qi

⎛⎝Tt −
∑

j

(
qj Tkj

+ pj Tnj

)⎞⎠⎤⎦⎫⎬⎭ = 0,

(89)
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whenever equation (86) is satisfied. We may prescribe t, ki, nj , qr , ps (1 � i, j, r, s � 3)
arbitrarily while functions T, Ki and Nj only depend on t, ki, nj . Thus, equation (89) will be
satisfied if and only if we have the following equations:∑

i

Ki t (ni(k2 + w) − ki(k · n)) = 0, (90)

Ni(k2 + w)
(
k2 + w − k2

i

)−
∑

j

Kj ki
(nj (k2 + w) − kj (k · n))

−Tt (ni(k2 + w) − ki(k · n)) + Ki((k2 + w)(k · n + ni) − 2 ki) = 0, (91)

Tki
(nj (k2 + w) − kj (k · n)) = 0, (92)

Tni
(nj (k2 + w) − kj (k · n)) = 0, (93)∑

j

Kj ni
(nj (k2 + w) − kj (k · n)) = 0. (94)

These equations are called the determining equations. From equation (91) for each i we have

Ni = (k2 + w − k2
i

)−1

⎧⎨⎩(2 ki(k2 + w)−1 − (k · n + ni))Ki

+
∑

j

(nj − kj (k · n)(k2 + w)−1)Kj ki
+ (ni − ki(k · n)(k2 + w)−1) Tt

⎫⎬⎭ . (95)

Since n �= 0, without loss of generality, one may assume that n1 �= 0. Also, since k2 + w �= 0,

so by equations (92) and (93) we conclude that T just depends on t :

T = T (t). (96)

By solving equation (90) with respect to t, we deduce the following relation of Ki’s:∑
i

(ni(k2 + w) − ki(k · n))Ki = 0. (97)

After differentiating the latter equation with respect to nj when we apply equations (94) we
arrive at the following relations:(

k2 + w − k2
i

)
Ki −

∑
j �=i

kikjKj = 0.

These relations suggest the general forms of K1,K2 and K3 as follows:

K1 = K2 = K3 = 0. (98)

By applying (98) on relations (95) for different values of i, the forms of Ni’s are also achieved:

Ni = (k2 + w − k2
i

)−1
(

ni − k · n
k2 + w

ki

)
Tt . (99)

Finally, the general form of infinitesimal generators as elements of point symmetry algebra
of equation (86), which we call point infinitesimal generators, for arbitrary functions T is as
introduced in relation (87). �

The Lie bracket (commutator) of every two vector fields in the form of (87)
straightforwardly is an infinitesimal operator in the same form of them. More explicitly,
the commutator of operators vT and vT is the vector field vT T t−Tt T . Hence, the Lie algebra
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g = 〈vT 〉 of the point symmetry group G, when T is an arbitrary smooth function which
depends on t, is a Lie algebra.

Theorem 2. A complete set of functionally independent invariants of the one-parameter
group generated by vector field (87) consists of

Ii(t, k, n) = ki, Ii+3(t, k, n) = |T |−�i (L(i) · n), (100)

where L(i) s (i = 1, 2, 3) are functions of k to be determined below and

A =
3∑

j=1

(
k2 + w − k2

j

)
k2
j , �1 = (k2 + w)−1

[
1 +

√
A

3B
cos

(
φ

3
− π

3

)]
,

B =
3∏

j=1

(
k2 + w − k2

j

)
k2
j , �2 = (k2 + w)−1

[
1 − 2

√
A

3B
cos
(φ

3

)]
, (101)

φ = arctan

√
A3

27 B
− 1, �3 = (k2 + w)−1

[
1 + 2

√
A

3B
cos
(φ

3
+

π

3

)]
.

Proof. According to theorem 2.74 of [35], the invariants u = I (t, k, n) of one-parameter
group with infinitesimal generators in the form of (87) satisfy the linear homogeneous partial
differential equations of first order:

v[I ] = 0.

The solutions of the latter are found by the method of characteristics (see [35, 36] for details).
So, we can replace the above equation by the following characteristic system of ordinary
differential equations:

dt

T
= dki

Ki

= dnj

Nj

. (102)

Replacing the coefficients from equation (87), one can conclude that ki’s are invariant, that is,
if ci are arbitrary constants, then one has the following invariants for i = 1, 2, 3:

Ii(t, k, n) = ki = ci . (103)

From the characteristic equations one can conclude that considering the following system of
the differential generator (87):

dt

T
= dni

Ni

, for i = 1, 2, 3, (104)

one can rewrite it as

(k2 + w)
dni

d ln |T | = ni − k · n − ki ni

k2 + w − k2
i

ki , for i = 1, 2, 3, (105)

or as the following summary form:

d n
d ln |T | = M · n = 1

k2 + w

⎛⎜⎜⎝
1 −k1 k2

k2+w−k2
1

−k1 k3

k2+w−k2
1

−k1 k2

k2+w−k2
2

1 −k2 k3

k2+w−k2
2−k1 k3

k2+w−k2
3

−k2 k3

k2+w−k2
3

1

⎞⎟⎟⎠ · n. (106)

The latter equation can be solved for n by finding the eigenvalues of the matrix M (this result is
true since the operator d

d ln |T | is linear). Solving the characteristic equation det(� Id3 −M) = 0
which has three real roots, we find the eigenvalues �i as

�1 = (k2 + w)−1[1 + C
1/3
1 + C

1/3
2

]
,

�2 = (k2 + w)−1

[
1 +

(
−1

2
+

√
3

2
i

)
C

1/3
1 +

(
−1

2
−

√
3

2
i

)
C

1/3
2

]
, (107)
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�3 = (k2 + w)−1

[
1 +

(
−1

2
−

√
3

2
i

)
C

1/3
1 +

(
−1

2
+

√
3

2
i

)
C

1/3
2

]
,

where we have

A =
3∑

j=1

(
k2 + w − k2

j

)
k2
j , B =

3∏
j=1

(
k2 + w − k2

j

)
k2
j ,

(108)
C1 = − 1

B
[1 −

√
1 − A3/27B], C2 = − 1

B
[1 +

√
1 − A3/27B].

Since each term
(
k2 + w − k2

j

)
k2
j is non-negative, from a well-known inequality concerning

arithmetic and geometric mean values, one finds that A3

B
� 27 and so C1 is derived to be

C1 = − 1

B

[
1 − i

√
A3

27B
− 1

]
=
(

A

3B

)3/2

e(π−φ) i, (109)

where φ = arctan
√

A3

27 B
− 1. A similar method for C2 tends to the following relation for the

same value of φ :

C2 = − 1

B

[
1 − i

√
A3

27B
− 1

]
=
(

A

3B

)3/2

e(φ−π) i. (110)

Thus

�1 = (k2 + w)−1

[
1 +

√
A

3B
cos

(
φ

3
− π

3

)]
. (111)

Also using the last forms of C1, C2 for �2 and �3 in (107) we conclude that

�2 = (k2 + w)−1

[
1 − 2

√
A

3B
cos

(
φ

3

)]
,

(112)

�3 = (k2 + w)−1

[
1 + 2

√
A

3B
cos

(
φ

3
+

π

3

)]
.

Now equation (106) can be considered as
d

d ln |T | (L(i) · n) = �i (L(i) · n), i = 1, 2, 3, (113)

where L(i) is the left eigenvector of the matrix M corresponding to the eigenvalue �i . Equations
(113) are justified since L(i)’s are only functions of k as an invariant. The forms of L(i)’s
in terms of k are too complicated and thus we do not write their explicit expressions here.
The above equations result in relations L(i) · n = di |T |�i where di’s are arbitrary constants
(i = 1, 2, 3). Thus we deduce the following invariants:

Ii+3(t, k, n) := |T |−�i (L(i) · n) = di, i = 1, 2, 3. (114)

Finally from [35], p 62, we find that the functions I1, I2, . . . , I6 form a complete set of
functionally independent invariants of the one-parameter group of the vector field (87). �

Similar to the theorem of section 4.3.3 of [36], the derived invariants (100) as independent
first integrals of the characteristic system of the infinitesimal generator (87) provide the general
solution

S(t, k, n) := μ(I1(t, k, n), I2(t, k, n), . . . , I6(t, k, n)),
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with an arbitrary function μ, which satisfies in the equation v[μ] = 0. This theorem can be
extended for each finite set of independent first integrals (invariants) of characteristic system
provided with an infinitesimal generator.

In the following, we give some examples provided with different selections of coefficients
of equation (87) to show the method explicitly. We always assume the existence of nonzero
coefficients of the vector fields.

Example 1. If we assume that T = c = const, then the infinitesimal operator (87) reduces
to the vector field v1 = c ∂

∂t
and the group transformations (or flows) for the parameter s are

expressible as (t, k, n) → (t̃ (s), k̃(s), ñ(s)) = (t + cs, k, n) which form the (local) symmetry
group of v1. The derived invariants in this case will be as follows:

Ii = ki, Ii+3 = ni, for i = 1, 2, 3.

Therefore, the general solution corresponding to v1 when μ is an arbitrary function, is

S(t, k, n) = μ(k, n).

Example 2. Let T = t , then the infinitesimal generator is

v2 = t
∂

∂t
+

3∑
j=1

(
k2 + w − k2

j

)−1
(

nj − k · n
k2 + w

kj

)
∂

∂nj

.

Thus, the flows of v2 for various values of parameter s are

(t, ki, nj ) −→ (
t̃ (s), k̃

(s)
i , ñ

(s)
j

)
= (tes , ki,

(
k2 + w − k2

j

)−1[
nj e

s

k2+w + (k · n − kjnj )kj

(
1 − e

s

k2+w

)])
.

Also, we have the invariants

Ii = ki, Ii+3 = |t |−�i (L(i) · n), for i = 1, 2, 3,

whenever defined, and the general solution of equation (86) as

S(t, k, n) = μ(k, |t |−�i (L(i) · n)),

where μ is an arbitrary function.

Example 3. In the case T = et the infinitesimal generator (87) changes to

v3 = et

[
∂

∂t
+

3∑
j=1

(
k2 + w − k2

j

)−1
(

nj − k · n
k2 + w

kj

)
∂

∂nj

]
,

with group transformations of the parameter s transforming (t, ki, nj ) to(
t̃ (s), k̃

(s)
i , ñ

(s)
j

)
=
(

ln{et (1−set )−1}, ki,
(
k2 + w − k2

j

)−1
[
nj e

et
s

k2+w + (k · n − kjnj )kj

(
e−t − e

et
s

k2+w

)])
,

wherever defined. Independent invariants are

Ii = ki, Ii+3 = e−�it (L(i) · n), for i = 1, 2, 3,

and hence the general solution of (86) with respect to infinitesimal operator v3 is an arbitrary
function of these invariants.

In the above examples we saw that if (t, k, n) is a solution of equation (86) then also for
any arbitrary value of s, (t̃ (s), k̃(s), ñ(s)) is another solution for this equation. Any solution
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presents k and n as functions of the wave phase t. Therefore, the above symmetry suggests
that

dk̃(s)

dt̃ (s)
·
(

ñ(s) − k̃(s) · ñ(s)

k̃(s) 2 + w
k̃(s)

)
= 0. (115)

Physically this means as follows: assume a special form of n(t) is given as a function of
the wave phase t which we have successfully found a solution k(t) related to it based on the
relevant symmetry restrictions. Equation (115) implies that there is a solution, namely, k̃(s)

for the new form of n, namely, ñ(s). In other words, any solution of the vortex mode equation
obtained through the above symmetry discussions, provides a solution for another equation
corresponding to it.

Up to now, we have performed our analysis according to the ‘second viewpoint’ introduced
in the paragraph after equation (86), through which k and n are both considered as dependent
variables so that a relation between them may appear via special obtained solutions. In such a
viewpoint we have dropped the restriction of the unit length for n which we have seen is not im-
portant because equation (86) is linear and homogeneous with respect to n. However, let us add
this restriction to the above symmetry analysis reaching the following theorem and its corollary.

Theorem 3. The point Lie algebra of equation (86) when n is a unit (constant) normal vector
to the wavefront is g = 〈

∂
∂t

〉
isomorphic to the Lie algebra R. Therefore, the point symmetry

group of the equation with this additional condition is the group of phase translations.

Proof. When we assume n to be of unit length, then by the action of v(1) (the first prolongation
of the general form (88) of the infinitesimal generator v) on the relation n2

1 + n2
2 + n2

3 = 1 we
tend to the following equation:

n1 N1 + n2 N2 + n3 N3 = 0, (116)

which must be added to the previous derived conditions (96), (98) and (99). The last equation
along with the deduced form of Ni’s in (99) implies that Tt = 0. Hence, T = c for arbitrary
constant c and for each i, Ni = 0. Therefore, the form of infinitesimal generators reduces
from relation (87) to v = ∂

∂t
. �

According to [35], p 209, any system of partial differential equations which has only a
finite-dimensional symmetry group is certainly not linearizable, that is, for every change of
variables, it cannot be mapped to an inhomogeneous form of the linear system D[u] = f ,
where D is a second-order linear differential operator, u indicates dependent variables and f

denotes smooth functions of independent variables.

Corollary 1. The vortex mode equation in the form (86) with the constant length for n cannot
be reduced into an inhomogeneous form of a linear equation.

5.2. Invariant differential equations

In the last subsection, in examples 1–3, we suggested some different forms of general solutions
under conditions of those examples. Let V (t, ki, nj ) = 0, as an unknown function of seven
variables in J 0(R, R

6), be the implicit relation which defines ki’s and nj’s as functions of t.
Then by the theorem of section 4.3.3 in [36], one may replace the equation V = 0 by the
equation μ(I1, . . . , I6) = 0 where Ik’s are functionally independent invariants of the vortex
mode equation and μ is an arbitrary function. Thus, in examples 1–3, by considering various
forms of μ which define explicit relations among the independent and dependent variables,
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one can extract special exact solutions of equation (86). Cases I–IV below are considered
under the situation of example 1, and case V is related to examples 2 and 3.

Case I. If μ = (k ± n)2 = 0, then substituting the solution k = ±n in the equation, it reduces
to the below expression:

dn
dt

· n = 0,

which shows that the length of n and consequently the length of k is constant (remember the
discussion at the beginning of this section in which temporarily we ignored the unity of the
length of n). From the physical point of view, this solution of equation (86) is obtained when
k is in the direction of n or in the opposite direction of it, which yields that streamlines are
everywhere perpendicular to wavefronts.

Case II. Let μ = k · n = 0; then the principal equation reduces to the following form:

dk
dt

· n = 0.

It is worth to note the physical meaning of the condition k · n = 0. According to equations
(13) and (22), we see that in this special case, the phase velocity λ = 0. Thus, our simple wave
solution reduces to a stationary solution. In addition, since k and dk

dt
are both perpendicular to

n, we see that each streamline (which coincides the integral curve of k) starting from a point
at a wavefront, always remains in the same wavefront.

Case III. When μ = |k × n| = 0, then we find it as a generalization of case I, where k is still
parallel to n. Therefore, we see that streamlines are perpendicular to wavefronts.

Case IV. For different values 1 � α, β, γ � 3 assume μ = k2
α + k2

β = 0. Then the equation
will change to the following equation (1 � γ � 3):

nγ w

k2
γ + w

dkγ

dt
= 0,

with the exact solution kγ = const. This condition imposes a relation between the three
components of the fluid velocity v.

Now, we consider the general form of examples 2 and 3 when T is an arbitrary function
of t and μ provides an implicit solution of equation (86) in terms of I1, . . . , I6 in (100). In this
condition, one can consider the following case for μ.

Case V. Let μ =∑i |T |−�i (L(i) · n) = 0. Then one concludes that(∑
i

|T |−�i L(i)

)
· n = 0. (117)

The expression in the parentheses is a vector function of k which is seen to be perpendicular
to n at any point of the physical space. This vector is therefore tangent to the wavefront
everywhere. Restriction (117) is a generalization of the restriction proposed in case II with
more complexity.

Thus, we are faced with a very wide variety of arbitrary forms of μ each of which
may impose a special restriction or condition on the physical solution. So, we observe the
possibility of creating a lot of classical solutions of which we just selected five cases having
some physical interests.
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Table 1. Commutator table provided by contact symmetries.

vT vKα
vNβ

vQγ
vPη

vT 0 vT + vKα
vT + vNβ

vT + vQγ
vT + vPη

vKα
−vT − vKα

0 vKα
+ vNβ

vKα
+ vQβ

vKα
+ vPη

vNβ
−vT − vNβ

−vKα
− vNβ

0 vNβ
+ vQγ

vNβ
+ vPη

vQγ
−vT − vQγ

−vKα
− vQγ

−vNβ
− vQγ

0 vQγ
+ vPη

vPη
−vT − vPη

−vKα
− vPη

−vNβ
− vQη

−vQγ
− vPη

0

5.3. The contact symmetry of the equation

In the last subsection, we did not take into account the role of derivatives in the presented
symmetry analysis. It is natural to investigate the contact symmetry analysis including the
derivatives as well. According to Bäcklund’s theorem [35], if the number of dependent
variables is greater than 1 (like our problem), then each contact transformation is the
prolongation of a point transformation. In this subsection, we present the structure of
infinitesimal generators of contact transformations and their related flows. The normal vector
to wavefront, n, is assumed to be either arbitrary (not necessarily unit) or of unit length and
then we find the contact symmetry properties of equation (86) in these two situations.

We suppose that the general form of a contact transformation is of the form

t̃ = φ(t, ki, nj , qr , ps), k̃l = χl(t, ki, nj , qr , ps), ñm = ψm(t, ki, nj , qr , ps),

q̃n = ηn(t, ki, nj , qr , ps), p̃u = ζu(t, ki, nj , qr , ps),

where i, j, l, m, n and u varies between 1 and 6, and φ, χl, ψm, ηn and ζu are arbitrary smooth
functions.
Theorem 4. The contact symmetry group of equation (86) is an infinite-dimensional Lie
algebra generated by the contact infinitesimal operators

vT = T
∂

∂t
, vKi

= Ki

(
∂

∂ki

+
ni(k2 + w) + (k · n)(k2 + w − 2 ki)

(k2 + w)(n1(k2 + w) − k1(k · n))
qi

∂

∂q1

)
,

vPi
= Pi

∂

∂pi

, vNi
= Ni

(
∂

∂ni

− k2 + w − k2
i

n1(k2 + w) − k1(k · n)
qi

∂

∂q1

)
, (118)

vQj
= Qj

(
∂

∂qj

− nj (k2 + w) + kj (k · n)

n1(k2 + w) − k1(k · n)

∂

∂q1

)
,

where for 1 � i � 3 and 2 � j � 3, T ,Ki,Nj ,Qj , Pi are arbitrary smooth functions. Also,
the Lie bracket of two such vector fields is in the form introduced in the commutator table 1.
Proof. In this case of group action an infinitesimal generator, which is a vector field in
J 1(R, R

6), has the following general form:

v := T
∂

∂t
+

3∑
i=1

{
Ki

∂

∂ki

+ Ni

∂

∂ni

+ Qi

∂

∂qi

+ Pi

∂

∂pi

}
, (119)

for arbitrary smooth functions T ,Kl,Nm,Qm, Pu (l = 1, 2 and 1 � m, n, u � 3).
Since our computations are done in 1-jet space, we do not need to lift v to higher jet

spaces and hence we act v (itself) on equation (86). Accordingly, we obtain the relation
3∑

i=1

{
Niqi(k2 + w)

(
k2 + w − k2

i

)
+ Qi(k2 + w)[ni(k2 + w) − ki(k · n)]

− Kiqi

[
ni(k2 + w) + (k · n)(k2 + w − 2ki)

]} = 0.
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From n �= 0, without loss of generality, we can suppose that n1 �= 0; then the solution to
this equation would be

Q1 = (k2 + w)−1(n1(k2 + w) − k1(k · n))−1

⎧⎨⎩
3∑

i=1

[
Kiqi(ni(k2 + w) + (k · n)(k2 + w − 2ki))

−Niqi(k2 + w)
(
k2 + w − k2

i

)]−
3∑

j=2

Qi(k2 + w)[ni(k2 + w) − ki(k · n)]

⎫⎬⎭ .

Therefore, the infinitesimal generator, which we refer to as a contact infinitesimal generator,
is of the form

v = T
∂

∂t
+
∑

i

Ki

(
∂

∂ki

+
ni(k2 + w) + (k · n)(k2 + w − 2 ki)

(k2 + w)(n1(k2 + w) − k1(k · n))
qi

∂

∂q1

)

+
∑

i

Ni

(
∂

∂ni

− k2 + w − k2
i

n1(k2 + w) − k1(k · n)
qi

∂

∂q1

)
+
∑

i

Pi

∂

∂pi

+
∑
j=2,3

Qj

(
∂

∂qj

− nj (k2 + w) + kj (k · n)

n1(k2 + w) − k1(k · n)

∂

∂q1

)
. (120)

One may divide the latter form into the vector fields (118) to consist a basis for the Lie
algebra g = 〈v〉 of the contact symmetry group G. The commutator of every two vector fields
(118) is a linear combination of two operators (118), which are generally in the form of those
two operators again. Thus, these vector fields construct a basis for the Lie algebra g of the
contact symmetry group G. The commutator table is given in table 1 for 1 � α, β, η � 3 and
2 � γ � 3. In this table, when the commutator of two vector fields is generally in the same
form of some vector fields in (118), then we use those general forms again to show the results
of commutators. �

It is interesting to note that in equations (118) if all the coefficients, T ,Ki,Ni,Qj , Pi ,
are equal to 1 and also k · n = 0, then in this special case we obtain the following theorem for
n. The restriction k · n = 0 has a relatively acceptable physical justification (refer to case II
of section 5.2).

Theorem 5. If (t, k, n, q, p) is a solution to the vortex mode equation (86) for k · n = 0, then
the equation holds for

[GT ] (t + s, k, n, q, p),

[GKi
] (t, k + S, n, q1e−n1s1 − n2q2s2 − n3q3s3, q2, q3, p),

[GN1 ]
(
t, k, n1 + s, n2, n3, q1n

A1
1 e−A1 ln(s+n1), q2, q3, p

)
,

[GN2 ,GN3 ] (t, k + S̄, n, q1 − A2q2s2 − A3q3s3, q2, q3, p),

[GQj
]

(
t, k, n, q1 − n2

n1 s2 − n3
n1 s3, q2 + s2, q3 + s3, p

)
,

[GPi
] (t, k, n, q, p + S),

(121)

where s, s1, s2, s3 are the arbitrary constant parameters, S = (s1, s2, s3), S̄ = (0, s2, s3) and

Ai = 1 − k2
i

k2+w
for i = 1, 2, 3.
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Proof. Let GT ,GKi
,GNi

,GQj
,GPi

resp. be one-parameter groups corresponding to contact
infinitesimal operators vT , vKi

, vNi
, vQj

, vPi
of (118); then we have

G1 := GT : (t, k, n, q, p) �−→ (t + s, k, n, q, p),

G2 := GK1 : (t, k, n, q, p) �−→ (t, k1 + s, k2, k3, n, q1e−n1s , q2, q3, p),

G3 := GK2 : (t, k, n, q, p) �−→ (t, k1, k2 + s, k3, n, q1, −n2q2s, q3, p),

G4 := GK3 : (t, k, n, q, p) �−→ (t, k1, k2, k3 + s, n, q1, q2, −n3q3s, p),

G5 := GN1 : (t, k, n, q, p) �−→ (t, k, n1 + s, n2, n3, q1n
A1
1 e−A1 ln(s+n1), q2, q3, p),

G6 := GN2 : (t, k, n, q, p) �−→ (t, k, n1, n2 + s, n3, q1 − A2q2s, q2, q3, p),

G7 := GN3 : (t, k, n, q, p) �−→ (t, k, n1, n2, n3 + s, q1 − A3q3s, q2, q3, p),

G8 := GQ2 : (t, k, n, q, p) �−→ (
t, k, n, q1 − n2

n1
s, q2 + s, q3, p

)
,

G9 := GQ3 : (t, k, n, q, p) �−→ (
t, k, n, q1 − n3

n1
s, q2, q3 + s, p

)
,

G10 := GP1 : (t, k, n, q, p) �−→ (t, k, n, q, p1 + s, p2, p3),

G11 := GP2 : (t, k, n, q, p) �−→ (t, k, n, q, p1, p2 + s, p3),

G12 := GP3 : (t, k, n, q, p) �−→ (t, k, n, q, p1, p2, p3 + s),

(122)

for an arbitrary parameter s. Thus if (t, k, n, p) satisfies in the vortex mode equation (when
k · n = 0), then the actions Gl · (t, k, n, p) (1 � l � 12) suggest new solutions for the
equation and this completes the proof. �

Finally, according to the discussion just before theorem 3 (section 5.6) it looks useful to
add the restriction of unit length for n to the present (contact) symmetry analysis.

Theorem 6. The contact symmetry group of equation (86) consisting of unit normal
wavefront is an infinite-dimensional Lie algebra and its Lie algebra is generated by the
contact infinitesimal operators (120) when we replace the coefficient N1 by − n2

n1
N2 − n3

n1
N3.

The commutator table of these vector fields is in the form of table 1 when we eliminate the row
and column corresponding to vN1 and then change vN2 and vN3 to the new forms.

Proof. One may repeat the above process for the problem of finding contact Lie algebra of
equation (86) with the supplementary condition of n to be unit. In this case, there is another
condition v(equation(116)) = 2(n1 N1 + n2 N2 + n3 N3) = 0 by the action of a contact
infinitesimal generator on equation (86) which must be added to other relations of coefficients.
Since n �= 0, we can suppose n1 �= 0 and then N1 = − n2

n1
N2 − n3

n1
N3. �

6. Summary and conclusions

Towards a deeper understanding of the mysterious behaviour of hydrodynamical equations, it
is worthwhile to look for various classical solutions. Among these solutions, simple waves and
multi-waves are very appropriate for compressible flows. These solutions show, in particular,
how it is possible that smooth initial conditions convert to discontinuities and singularities at
future times. Thus, there is a hope that by a detailed and deep analysis of these waves, one may
find more general statements about the appearance of non-smoothness converging to weak
solutions. As mentioned in the introduction, since 1D Riemann waves were useful to prove the
1D shock convergence, it looks natural to be able to generalize the case to multi-dimensional
flows. In other words, one may use the present multi-dimensional classical solutions of simple
waves to investigate the shock convergence in higher dimensions. To achieve this aim we
should take into account viscous terms and utilize this multi-dimensional simple wave as a
base to reach to a perhaps more general shock convergence. However, any classical solution
definitely has its own value in understanding the behaviour of the system under consideration.
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In the present work, a multi-dimensional version of simple waves introduced in [17, 19]
were employed for fully relativistic fluids and plasmas. Each wavefront is a plane travelling
with its own phase velocity vector. The intersection of different wavefronts is forbidden in
the domain of the (classical) solution. Also, at each instant of time there is a surface as the
boundary between the two regions: the region of the validity of the solution and the forbidden
region where the solution does not exist. This boundary generally moves and changes in the
course of time.

Similar to the non-relativistic case [19], three essential modes were found, namely the
vortex, the entropy and sound modes. Each mode suggests a wide variety of classical solutions
while only very few typical solutions were presented as illustrations of the method of solving
the problem at hand. The vortex and entropy modes were solved both in the laboratory
and wave frames while due to the high complexity of sound modes we studied them only
in the wave frame. Furthermore, as a special physically valid example we considered the
thermodynamically state equation at ultra-relativistic temperatures and obtained a formal
classical solution in the wave frame.

A symmetry analysis for the vortex mode equation (as a typical equation) led to the
characterization of point and contact infinitesimal generators as well as fundamental invariants
of the equation. According to what has been mentioned in section 1, a complete symmetry
analysis for fully relativistic fluid equations (6)–(9) is so difficult, wide-ranging and detailed,
that it requires a separate investigation. Thus, here a limited symmetry analysis was pursued
only for one of the modal equations that appeared in the framework of simple waves. The
discussion of section 5.1 led us to obtain invariants of point transformations (which maps the
space of solutions to itself) possessing two distinguished physical results. The first is that
under certain restrictions we can extract a new equivalent equation from the original one with
the same space of solutions. This means that given a suitable special solution, yields another
solution for a new equation of the same type (see section 5.1, especially equation (115)). The
second result concerns with the possibility of creating a wide class of solutions which only
very few of them with physical interests were introduced via cases I–V in section 5.2.

As one step further than the point symmetry, the contact symmetry was investigated to find
contact transformations mapping the space of solutions (as a submanifold of the first-order jet
bundle related to the equation) to itself. The invariants corresponding to these transformations
were too long and cumbersome to appear here. In the special case of our problem, the
contact and point symmetry group of the vortex mode equation were both found to be infinite-
dimensional Lie groups when the normal vector to the wavefront is not necessarily unit. It was
discussed at the beginning of section 5 that the unit length of this normal vector is not important
in the utility of our symmetry analysis. However, it was found that when it has the unit length,
there appears a one-dimensional point symmetry group while the contact symmetry group is
still infinite-dimensional. The same procedure can be probably made for equations of other
modes, namely the entropy and sound modes.
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